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Nikishin type systems of meromorphic functions whose poles lie symmetrically
with respect to the real axis are considered. For such systems. it is shown that the
main diagonal of the associated Hermite-Pade approximanls converges and the
poles are located hy the zeros of the corresponding denominators. An interesting
feature is that multipoint Pade approximation plays a key role in the proof. '1'1'6
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1. INTRODUCTION

I. Simultaneous rational approximation of finite systems of analytic
functions has its origin in Hermite's investigations on the trascendence of
e. Since then, other applications in number theory were obtained. After
Hermite's works, mostly the formal aspect of the theory, which deals with
algebraic relations and normality of such systems, was developed. Only
recently, relatively large classes of systems of analytic functions have been
found for which the convergence theory offers reasonable results. For
references and more information concerning the formal and analytic
theory see [l, 2] and the review paper [3].

In [I], E. M. Nikishin introduced an important class of such systems,
which has been named after him. They are formed by a finite number of
Cauchy transforms of finite positive Borel measures supported on the
same interval which are internally linked.

Here, we deal with Nikishin systems of two functions perturbed with
rational aggregates. The reason for considering this generalization is to
study the effect that the poles of the approximated functions have on those
of the rational simultaneous approximants and check certain phenomena
which occur in Pade approximation (as, for example, attraction of poles).
Although, for simplicity in the exposition and reading, we restrict our
attention to the case of two functions, many of the results may be
extended to the general situation of m functions. The main ideas in the
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proofs become transparent from the simple case, the rest of the ingredi­
ents may be found in [2].

2. Let .1 1' .1 2 be non-intersecting bounded intervals of the real line IR
(the intervals may be taken unbounded, but that restriction simplifies some
arguments in the proof of Lemma 1 below, see [2, Lemma 3]); j.l and u
denote finite positive Borel measures on .1 1 and .1 2 ' respectively, whose
support (supp) contain an infinite set of points. For an arbitrary positive
measure A on a segment .1, we write

A f dA(x)
A(z) = -- .

.jz-x

Note that A is holomorphic in C \ .1, and takes real values on IR \ .1.
Consider fixed rational functions ri = sjti, i = 1,2,3, where Si and t i

are polynomials with real coefficients, deg ti = d i , deg S3 = d 4 , r, E L1(j.l).
Set

In this paper, we consider the simultaneous approximation of the func­
tions

f
gi( x)

!i(Z) = ~-dj.l(x) +ri(z),
..1, z - X

i = 1,2, ( I )

by means of interpolating rational functions (Hermite-Pade approxi­
mants). To be more specific, we study the convergence of the sequences
7T".; = p".jQ", fl E N, i = 1,2, where P'''i and Q" are polynomials cho­
sen to satisfy the conditions:

(i) deg Q" ~ fl, Q" '* 0,
(ij) (Q,Ji - PII"Xz) = 0(ZIl/2-1), i = 1,2, for even fl or (Q,Ji ­

P)(z) = 0(Z-(,,-1l/2-,) i = 1 2 for odd fl
11,1 ' " •

Note that for even 11 the interpolation conditions are equally distributed
between the two functions, while for odd 11 the second function receives
one more.

The existence of the indicated polynomials reduces to solving a system
of 11 linear homogeneous equations on the 11 + 1 coefficients of Qn"
Therefore a non-trivial solution always exists. PII . i is taken as the polyno­
mial part of Q,Ji' In general, for fixed 11 (unlike the case of classical Pade
approximants) the rational functions are not uniquely determined. There­
fore, given 11, we consider any fixed possible solution to (i)-(ij). In the
sequel, we normalize QII to have leading coefficient equal to one.
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In [Il, E. M. Nikishin proved (when 'i == 0, i = 1,2 and '3 == 1) that

3

(2)

uniformly on each compact subset of D. In the same paper, the general
concept of Nikishin system of m functions was introduced. For such
systems, in [2] we proved that (2) takes place for all the m functions. In the
meromorphic case, we obtain some convergence properties of type (2);
but, in general, with a weaker topology (see Theorem I below).

3. Before stating our main result, we must introduce some notations.
Given a compact set K e C, by cap(K) we denote its (outer) logarithmic
capacity. Let {CPn}, n E N, and cP be continuous complex-valued functions
defined on a region G e C. We say that CPn converges in capacity to cP on

cap
each compact subset K of G (CPIl 7 cP, KeG), if for every c > 0

cap {z E K: Icpll - cpl ~ c} ~ O.
n

In the sequel, this is denoted by
cap

CPIl 7 cP,

We have:

KeG.

THEOREM 1. Fa, the functions defined abol'e alld i = 1,2
cap

'TTn,i 7f;, (3)

Convergence in capacity is due to the fact that some of the poles of 7T
1l

may fall in D altering uniform convergence. Nevertheless, under addi­
tional assumptions, the number of these zeros coincides, for sufficiently
large 11, with the total amount of poles (counting their multiplicities) of f1
and f2 in that region. Then, convergence in capacity yields uniform
convergence. Two such cases are considered in the following corollaries.

COROLLARY 1. Assume that:

(a) r l and '2 hal'e no common finite poles, and all of them lie in
C \ (.1 1 u .1 2 );

(b) '3 has 110 zero 0' pole on .1 1 U .1 2 '

Then,
s

7T".i 7fi' KeD, i = 1,2.

This notation stands for uniform convergence on compact subsets of D
in the spherical metrics. More precisely, we prove that, for all sufficiently
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large n, Q" has exactly n - (d, + d 2 ) simple zeros on .1,; the rest of the
zeros of Q" are "attracted" by the poles of f, and f2' according to their
multiplicities and in Dr = D \ (z: (th)(z) = O},

7T1l ,i :4/,.,
n

KeD', i = 1,2.

In particular, this implies that for large n, deg Q" = n; thus, for such
indexes the rational functions IT". i are uniquely determined.

COROLLARY 2. Assume that:

(a') r, = r2 + r;, where r2 and r; Iwce no common finite poles, and all
of them lie in I[ \ (.1, U .1 2 );

(b' ) r, == I and (T - I is either strictly positil'e or strictly negatil'e on

C \ .1 2 '

Then, for even n's,

KeD.

Remark I. Multipoint Pade approximants may be defined as usual (a.e.
see [4)). Extensions of Theorem 1 and the Corollaries may be proved for
such approximants and also for rational perturbations of Nikishin systems
of m functions even when the measures are supported on unbounded sets
(see [2]).

2. PROOF OF THEOREM 1

1. Let us first obtain some auxiliary relations. In the sequel n' = n/2 if
n is even and n' = (n - 1)/2 if n is odd. Also, we assume that n > 2d,
d = d I + d 2 + d, + d 4 + 2. This condition on n is to guarantee that all
forthcoming statements make sense; in fact, for each particular formula
better lower bounds for n may be given but we only need these relations
for large positive integers.

LEMMA 1. Let h".;, i = 1,2, be arbitrary polynomials such that

Then

degh".i:::; n' - d, - I,

degh"., :::;n'-d,-I,

i = 1,2, if n is even

deg h".2 :::; n' - d 2, for odd n.
(4)

(5 )
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On the other hand, let hn", i = 1,2, be arbitrary polynomials such that

5

Then

deg h n " s n' - d i ,

degh",l s n' - d
"

i = 1,2, if n is even

degh",2 s n' - d 2 + 1, for odd n.
(6)

where F".i = Q,Ji - p"." i = 1,2.

Proof Let h"., be as in (4). From (ij) and Cauchy's Theorem

0= ( (h",Ji)(z)[Q,J, - p".;](z) dzJr

where r is an arbitrary contour surrounding the segment ..:1\. Using
Fubini's Theorem, Cauchy's integral formula and deleting the expression
thus ohtained for i = 1 from the one for i = 2 we arrive to (5).

Now, let h", i be as in (6). From (ii), Cauchy's integral formula and
Fubini's Theorem, we have

d(

z - (

where r is an arhitrary contour surrounding the segment ..:1, which leaves
out thc point z. Deleting the expression one obtains for i = I from the
one for i = 2 you have (7). I

2. By construction, we know that F". i has a certain amount of zeros at
infinity. We will show that F"" has an extra amount of zcros on ..:1 2 '
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LEMMA 2. For n > 2d,

(8)

where P is an arbitrary polynomial, deg P :0; n' - d. In particular, FlI,l has
at least n' - 2d zeros of odd multiplicity on .1 2'

Proof Recall that d = d l + d 2 + d J + d 4 + 2. With P as above, tak­
ing in (5): h11,2 = Pl I1" h II, I == 0; using Fubini's Theorem and (7), we find
that

0= f [PQ,,l11 2 1J rJu] (x) dj.L(x)
.J I

[ PQ t to s ] ( x )=ff nl.J dj.L(x)dif(X)
.J,.J, x-s

Taking P = P11112s, in (8), with deg PI :0; n' - d - d l - d 2 - d4 , we
have

(9)

Assume that F,,,I changes sign on .1 2 at most II' - 2d - I times. Since
n' - 2d - I :0; II' - d - d , - d2 - d 4, we can construct a convenient
polynomial PI such that

This contradicts (9). Therefore, FII,I has at least 11' - 2d zeros of odd
multiplicity on .1 2 ' I

In order to obtain a similar relation for the second function we need to
introduce some more notation.

It is well known (see Appendix in [5]), that there exists a positive Borel
measure if * on .1 2 and a first degree polynomial Y' such that

(f(Z-X)-'dif(X»)-' = !(z-X)-ldif*(x)+Y'(z). (IO)
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LEMMA 3. For n > 2d,

7

0=1 [PF",2 t l t 2S3](X) d(T*(X),
,;12

where P is an arbitrary polynomial, deg P ::::; n' - d. In particular, F",2 has
at least n' - 2d zeros of odd multiplicity on .:1 2'

Proof With P as above, taking in (5): h",2 = Pth.Y, h",1 = Ptzt,f,;
we find that

From this, using (7), O{)), and Fubini's Theorem, we obtain

The statement concerning the zeros of F",2 on .1 2 follows using the
same arguments as in Lemma 2. I

3. In order to complete the proof of Theorem 1, we need one more
ingredient which is prodded by [2, Lemma 2], For the reader's conl'enience
we include the corresponding statement, but first some notation.

Let A be a finite positil'e Borel measure on .:1 C IR+, whose support
contains infinitely many points,

- I 1A(Z) = (z -x)- dA(X), c•. = Ix" dA(x),

and r = p/q (degq = d, (p, q) == 1) be a rational function whose poles
belong to C\.1. Set f= A+ r. Assume that f= O(Zk) (as Z ~ -00,

Z < 0) k E Z. Fix an arbitrary integer K ~ k. Consider a sequence of
polynomials w = {w"J, m E i1 c N, such that deg W I1l = K m ::::; 2m + K + 1,
whose zeros lie in (- 00, aJ/[ r =00], a < O. Let {R "'}, m E i1, be any
sequence of rational functions R

I1I
= p"./qm with real coefficients satisfying

that for each m:

(i') deg Pm S m + K, deg qm s m, qm ¢ 0;

(ij") (q",/ - P,,,)/w
l1l

= o(z-m-I +1') E H(C \ (.:1 U [r = 00])),

where t E Z + is fixed.
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We remark that for each m, there always exists R", with real coeffi­
cients satisfying (i)-(ii) but in general it is not unique as in the case when
t' = o.

LEMMA 4. Assume that {R",}, m E /1, with real coefficients satisfies
(i)-(ij) and either the number of zeros of w'" lying on a bounded segment of
IR tends to infinity as m ~ :xl or

L ( . )-1/2"
C = ':xl" .

Then
cap

R ~fm In '
m E it.

4. PROOF OF THEOREM 1. Let W",I' i = 1,2, be a monic polynomial
with n' - 2d simple zeros at those points where F", l changes sign on j 2'

and deg w", I ;::: fl' - 2d. This is possible according to Lemmas 1 and 2.
Thus

and condition (ii") takes place (with fl = m). Conditions (i') are easy to
verify with K = max (0, deg 5i - deg t). Since .1 2 is a bounded interval of
the real line (the proof may be reduced without loss of generality to the
case when j 2 E IR _) Theorem I follows at once from Lemma 4. I

Remark 2. In this paper we have only considered the main diagonal of
Hermite-Pade approximants. It is easy to verify that for sequences near
the main diagonal (when n , interpolation conditions are assigned to
function f, at infinity, with fl l + n 2 = n, In l - n21S C independent of n)
convergence in capacity also takes place. If j) is allowed to be unbounded
then a Carleman type condition on the moments of Jl must be required in
order to use Lemma 4.

3. PROOF OF COROLLARIES

1. From (l1) using, as in Lemma I, Cauchy's Theorem we can obtain
that Q" is orthogonal with respect to tig, dJ.l-/w" I' i = 1,2, for all powers
from 0 to n - 3d - I. This implies that Q" has 'at least 11 - 3d zeros on
jJ. But this is not enough to have uniform convergence. With additional
restrictions, we can obtain a better estimate of the amount of zeros of Q"
lying on j).
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LEMMA 5. Under the assumptions of Corollary 1, there exists no E N,
such that for n > no, Qn has at least n - d] - d 2 changes of sign on .1\
(zeros of odd multiplicity).

Proof Assume the contrary; that is, let 11 be an infinite set of indexes
(A c N) such that for n E 11, Q" changes its sign on .1 1 at most n - d l ­

d 2 - 1 times.
Let 11' c A be the set of even indexes in A and assume that If has

infinitely many points. We consider two cases; the first when deg s, ~
deg t3 + 1 and the second when deg s, > deg t, + 1. In either cases we
arrive to a contradiction.

For the first case, let us rewrite (5) in the following fashion:

Note that 11]/ 2 r,0- = O(Zd1-d 1 ) can be expressed as A+ r, where dil.(s)
= (t1't 2 r,)(s)dO'(s) is a constant signed measure on .1 2 , r = p/q is the
rational function (p and q are mutually prime polynomials)

and A+ r has at infinity either a pole of order d 2 - d \ if d 2 > d I or a
zero of degree d \ - d 2 if d I 2: d 2 (recall that deg s, :s deg t, + O.

Set m = n' - d 2 - I, n E A', and W m equal to the monic polynomial
whose simple zeros are those points on .1 I' where Q" changes sign. Take
qm and Pm as the polynomials defined by the conditions (i')-(ii"), with
f = A+ r, K = d 2 - d \, and t = O.

According to Lemma 4

cap
R --+fmin' KcC\.1, m E 11'. (13)

On the other hand, (see [2, Sect. 3, 0)]) it is easy to verify that

dA( s)
0= f S"qm(s)q(s)-(-),

4) W m S

v=O,I, ... ,m-c-l, (14)

where c is the number of poles of r in C \ .1 2 ' Relation (4) yields that,
qm has at least m - c zeros on .1 2 ' Therefore, the number of poles of R",
in iE \.1 2 is not greater than the number of poles of f in that region, and
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using [6, Lemma 1] we obtain

R m ( Z) -f;: j, KciC\.:::1, m E /\'.

(15 )

In particular, we have that for all sufficiently large m E /\', deg qm = m,
qm has exactly m - c zeros on .:::1 2 , and each pole of r attracts as many
zeros of qm as its order.

An integral expression for [q"Jt'12r3a - Pm](x) is easy to obtain (see
[2, Sect. 3, (2)]),

[ l
wm(x) f (q".lmq)(s) dA(s)

qm1t'12 r)a-Pm (x)= )
(lmq)(x ..1, Wm(S) x-s

where 1m denotes an arbitrary polynomial of degree :::; m - c. Note that
from the restrictions on the degrees of qm and Pm (conditions (i') applied
to this case), we can take in (12): h".2 = qm' Pm = 2. Substituting OS) in
(12) we find

(16)

Take in (16), 1m equals to the monic polynomial whose zeros are the zeros
of qm on .:::1 2 (n ~ no)' The measure dA(s) has constant sign; thus
considering the choice of 1m and W m ' we have that the function standing
under the outer integral has constant sign. Therefore, that integral cannot
be equal to zero. Hence, /\ does not contain an infinite set of even indexes
when deg S3 :::; deg 13 + I.

If deg s3 > deg 13 + 1, then we rewrite (5) as

From (10) we know that a-I is a Markov type function plus a first
degree polynomial. Therefore, proceeding as above, there exist a positive
Borel measure A' on .:::1 2 and a rational function r', such that

where Xc z) + r'( z) has at infinity either a pole of order d I - d 2 if
d] > d 2 or a zero of degree d 2 - d J if d 2 ~ d,. Reasoning as above, we
conclude that when deg s3 > deg 13 + 1, .1 cannot have an infinite set of
even indexes either.
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For odd indexes, the proof follows the same guidelines. The main trick
consists in taking each time qm and Pm conveniently. Thus we conclude
with Lemma 5. I

2. PROOF OF COROLLARY 1. From Theorem 1 (see (3»
(17)

On the other hand, from Lemma 5 we know that 1Tn . I + 1Tn • 2 has for
n ~ no at most d , + d 2 poles in D, while f, + f2 has in that region
exactly d I + d 2 poles. Therefore, from (I7) and [6, Lemma 1]

KeD.

This and (3) immediately render

S f
7Tn . i 7 i' KeD, i = 1,2.

The proof of Corollary 1 is complete. I

3. Proof of Corollary 2. This case may be reduced to the previous one. If
cr < 1 on .1 1' we can take F] = f , - f 2 , F2 = f 2 . Note that

1 - &( x)
FI(z)=! dJ.L(x)+r;(z),

.1
1

z - x

and

1 - &( x)
F2(z) = f [cr(x)j(l - cr(x)] dJ.L(x) + r 2(z) .

.:1
1

z - X

On the other hand, since cr < 1, it is easy to prove (see [5, Appendix]) that
there exists a positive measure (j * on .1 2 such that

cr(z)j(1 - o-(z») = o-*(x).

Therefore, you can use Corollary 1 for the functions F I , F2. After this you
return to the initial functions obtaining the statement of Corollary 1. If
cr> 1 on .1 2 ' the proof is analogous concluding with Corollary 2. I

The reason for restricting our attention in Corollary 2 to even indexes n
is to ensure that the denominators of the simultaneous Pade approximants
corresponding to the systems of functions Up f2) and (FI' F2) coincide;
otherwise (for odd n) in taking the difference, we lose one interpolation
condition at infinity for the second function.
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